1.) Temperature, Heat, and the First Law of Thermodynamics
 A.) Temperature
 B.) Zeroth law of thermodynamics
 C.) Celsius and Fahrenheit scales
 D.) Thermal expansion
 E.) Temperature and heat
 F.) Absorption of heat by solids and liquids
 G.) Heat and Work, First law of thermodynamics
 H.) Thermodynamic processes

2.) Kinetic Theory of Gases
 A.) Avogadro’s number
 B.) Ideal gases
 C.) Pressure, temperature and RMS speed
 D.) Translational kinetic energy
 E.) Distribution of molecular speeds
 F.) Molar specific heats of an ideal gas
 G.) Degrees of freedom and molar specific heats
 H.) Adiabatic expansion of an ideal gas

3.) Entropy and the Second Law of Thermodynamics
 A.) Irreversible processes and entropy
 B.) Change in entropy
 C.) Second law of thermodynamics
 D.) Entropy and engines
 E.) Entropy and refrigerators
 F.) Efficiencies of real engines

4.) Electric Charge
 A.) Electric charge
 B.) Conductors and Insulators
 C.) Coulomb’s law
 D.) Quantization and conservation of charge
5.) Electric Fields
 A.) Electric fields
 B.) Electric field lines
 C.) Electric field due to a point charge
 D.) Electric field due to an electric dipole
 E.) Electric field due to continuous distributions of charge
 F.) A point charge in an electric field

6.) Gauss’ Law
 A.) Electric flux
 B.) Gauss’ law
 C.) Gauss’ law and Coulomb’s law
 D.) A charged, isolated conductor
 E.) Gauss’ law and symmetric distributions of charge

7.) Electric Potential
 A.) Electric potential energy
 B.) Electric potential
 C.) Equipotential surfaces
 D.) Calculating the potential from the electric field
 E.) Potential due to a point charge
 F.) Potential due to a group of point charges
 G.) Potential due to a continuous distribution of charge
 H.) Calculating the field from the potential
 I.) Electric potential energy of a system of point charges
 J.) Potential of a charged isolated conductor

8.) Capacitance
 A.) Capacitance
 B.) Calculating the capacitance
 C.) Capacitors in parallel and in series
 D.) Energy stored in an electric field
 E.) Capacitors with a dielectric

9.) Current and Resistance
 A.) Electric current
 B.) Current density
 C.) Resistance and resistivity
 D.) Ohm’s law
 E.) Microscopic view of Ohm’s law
 F.) Power in electric circuits
10.) Circuits
A.) Work, energy and EMF
B.) Calculating the current in a single loop circuit
C.) Potential difference between two points in a circuit
D.) Multiloop circuits and Kirchoff’s rules
E.) Ammeters and voltmeters
F.) RC circuits

11.) Magnetic Fields
A.) The definition of B
B.) Crossed fields: the Hall effect and the electron
C.) A circulating charged particle
D.) Cyclotrons and synchrotrons
E.) Magnetic force on a current-carrying wire
F.) Torque on a current loop
G.) The magnetic dipole moment

12.) Magnetic Fields Due to currents
A.) Calculating the magnetic field due to a current; Biot-Savart law
B.) Force between two parallel currents
C.) Ampere’s law
D.) Solenoids and toroids
E.) A current-carrying coil as a magnetic dipole

13.) Induction and Inductance
A.) Faraday’s law of induction
B.) Lenz’s law
C.) Induction and energy transfers
D.) Induced electric fields
E.) Inductors and inductance
F.) Self-induction
G.) RL circuits
H.) Energy stored in a magnetic field
I.) Mutual inductance

14.) Alternating Current
A.) LC oscillations
B.) Alternating current
C.) Damped oscillations in an RLC circuit
15.) Maxwell’s Equations
 A.) Gauss’ law for magnetic fields
 B.) Induced magnetic fields
 C.) Displacement current
 D.) Maxwell’s equations
 E.) Magnets

16.) Electromagnetic Waves
 A.) Maxwell’s rainbow
 B.) Traveling electromagnetic waves
 C.) Energy transport and the Poynting vector
 D.) Radiation pressure
 E.) Polarization
 F.) Reflection and refraction
 G.) Total internal reflection

17.) Images
 A.) Images formed by plane mirrors
 B.) Images formed by spherical mirrors
 C.) Spherical refracting surfaces
 D.) Thin lenses
 E.) Optical instruments

18.) Interference
 A.) Light as a wave
 B.) Diffraction
 C.) Young’s interference experiment
 D.) Coherence
 E.) Intensity in double slit interference patterns
 F.) Thin film interference

19.) Diffraction
 A.) Diffraction and the wave theory of light
 B.) Diffraction by a single slit, locating minima
 C.) Intensity in single-slit diffraction interference patterns
 D.) Diffraction by a double slit
 E.) Diffraction gratings, resolving power